Signals of Parity Restoration at ATLAS and CMS

COLUMBIA UNIVERSITY

for the ATLAS and CMS Collaborations

Gustaaf Brooijmans

Signals of Parity Restoration at ATLAS and CMS

The LHC

• 14 TeV p-p

- At this energy, contribution of sea quarks/gluons to collisions very important, no need to produce antiprotons
- At design luminosity, 20 interactions every 25 ns
- New energy domain, and very high luminosities
 - ~100 x Tevatron

LHC Milestones

Last Magnet Lowered in Tunnel

Updated 30 April 2007

Data provided by D. Tommasini AT-MCS, L. Bottura AT-MTM

Interconnecting Last Sector

Signals of Parity Restoration at ATLAS and CMS

LHC Schedule

- First collisions @ 14 TeV in summer 2008
- ≥ 1 fb⁻¹ in 2008, 5 fb⁻¹ (?) in 2009

(At end of April 2007, ~I month behind schedule)

ATLAS & CMS

- Detector design driven by search for Higgs, study of top, search for new physics
 - Excellent calorimetry $(H \rightarrow \gamma \gamma)$
 - CMS ECAL saturates at ~1.7 TeV
 - Excellent momentum resolution at high p^T
 - Intense fields
 - Excellent b-tagging capabilities (pixel detectors)

ATLAS Installation

Gustaaf Brooijmans

Signals of Parity Restoration at ATLAS and CMS

CMS Installation

Diameter: 15m Weight: 14'500t

Trigger Systems

- Total inelastic crosssection ~6 orders of magnitude larger than W/Z production rate
- At design luminosity, even need to prescale
 W->lv events (produced at ~200 Hz)
- Need very sophisticated trigger systems

ATLAS Trigger

• Three level system, uses only calorimeter and muon system information at level 1

Petabyte ARCHIVE

Signals of Parity Restoration

- Primary signals are right-handed W', Z'
 - Dilepton resonances offer clean signals, well-understood backgrounds
 - At LHC, some concern about extrapolation of calibration from Z to very high energies
 - Electron/muon resolution improves/degrades with p^T
 - tt decays visible
 - v_R is presumably heavy, W' may only decay to quarks
 - If v_R lighter than W', v_R decays become important
- Of course, many models predict Z', W'-like resonances -> measure properties

Z' Production and Decay

- Production from u, d quarks is dominant at LHC
 - Couplings vary by model
 - E.g. for LR symmetric models, $\varkappa = g_R/g_L$ drives production cross-section (convolute with PDFs) and branching ratios
- Decays somewhat similar to Z (but no BR to light neutrinos, decays to top open up), plot assumes v_R heavier

<u>Z' -> ee</u>

ATL-PHYS-PUB-2005-010

Most promising channel: At Z' masses, energy resolutior

- dominated by constant term
 - 10 GeV for 1.5 TeV electron
 - Could measure width!
- CMS ECAL saturation will require reweighting
- Extend Tevatron reach as soon as understand data
 - 10 events needed for discovery

• Then up to 5-6 TeV for "typical" models

CDDT parametrisation, Phys.Rev.D70:093009,2004

Ζ' -> μμ: Early Potential

- CMS 1 TeV Z_{η} study
 - Narrower than SSM (7 vs 31 GeV), but dominated by detector anyway
 - Cross-section 2-3 times smaller than SSM
 - Note: statistics scaled down, so fluctuations "not to scale"

<u>Z' -> μμ Reach</u>

- 5σ discovery reach
- Systematics don't change these results much
- 2-3 TeV with 1 fb⁻¹
- 3-4 TeV with 10 fb⁻¹
- Again, assumes no "exotic" decays
- Discovery reach about 700 GeV below 95% CL limit at highest masses

- Studies underway, no public results
- Sensitivity substantially smaller
 - But if Z' preferentially coupled to 3rd generation...
- At the Tevatron, di-tau searches use channels with one tau decaying leptonically, the other hadronically
 - Projecting MET to reconstruct resonance mass diverges when τ's are back-to-back
 - "Visible mass" found to be more sensitive: some loss in resolution but can "rescale" mass

- In the dijet channel, the backgrounds are obviously much larger
 - But not necessarily unmanageable: DØ published a Run 1 search for resonances in the dijet channel

(PRD Rapid Comm. {69}, 111101 (2004))

Gustaaf Brooijmans

- So far, only events in which top decay jets are distinguishable have been studied in detail
 - Loss of efficiency at higher masses
- Studies using jet mass, substructure, etc. underway
- Continuum tt background dominant up to ~3 TeV

Limit on cross-section x BR

- BR very model-dependent, for SSM it's $\sim 1\%$
- "Lepton + Jets" channel has the best rate/background ratio (as for tt production)

- If v_R is lighter than m(Z')/2, decay channel opens up
- v_R subsequently decays to lW_R* (assuming W_R is heavier than v_R), leading to signature with two leptons and 4 jets
 - Or other combinations if m(v_R') < m(v_R), for example more leptons
 - If v_R is majorana, can get same-sign leptons!

• Backgrounds include $t\overline{t}$, ZZ, ... + jets, but also W_R !

Spin Determination

- Look at angle between lepton and beam direction
 - Spin 1 particles tend to emit leptons closer to beam
- Plot is potentially optimistic: sensitivity is in the forward region where lepton identification not nearly as efficient or pure

B. Allanach et al, JHEP 0009:019,2000

Model Determination

- Angular distribution gives excellent handle on g_V, g_A for various fermions
 - Charm may be possible
- This will come after an initial determination of branching ratios (obviously)
 - Complementary information in determining nature of resonance

CMS Note 2005/022

W'Production

- W' production rate not very dependent on couplings
- But interference with W important (and not in experimental studies)!
 - Key in identifying W' coupling helicity in fact (T. Rizzo, hep-ph/0704.0235)
- (This plot is for e+MET transverse mass, which may not be a signature)

• SSM W'

- "Standard" M_T plot
- Discovery reach ~4.5 TeV with 10 fb⁻¹
- Similar reach with electrons
 - Note very different resolution effects in electrons vs muons
- Decay does not necessarily exist!

- v_R mass critical in determining W_R decays
 - If $W_R \rightarrow l v_R$ open, and $v_R \rightarrow l W_R^* \rightarrow l \bar{q} q'$ open, get dilepton-dijet final state (similar to leptoquark pairs)

- ATLAS fast simulation study
 - Use of very high pT btagging
 - B meson decays *outside* first pixel layer! More studies needed to confirm efficiencies
- Overall, could already make a (BR) statement very early on

Note: This is for W_H from Little Higgs

W-W' Interference!

- tb resonance search suffers from interference with single top
 - Again, W coupling helicity important (destructive interference for m < m_W[,] if W' LH)
- Current experimental studies do not take this into account!

E.Boos et al., hep-ph/0610080

(No experimental resolution effects)

- Require at least one of the W, Z to decay leptonically to suppress backgrounds
 - Then use mass constraints to improve S/B further
- Cleanest channel is obviously when both decay leptonically (but BR only 1.4%)
 - Studied in the context of a technicolor study by CMS
 - LR model by ATLAS

- If allow one boson to decay hadronically, higher BR (4.6/15%)
 but higher
 backgrounds
 - Hadronically decaying boson has large boost, so jets are merged -> rely on jet mass
 - W/Z + jets background not well known

- Overall discovery potential with 300 fb⁻¹ for W' with BR (W'->WZ) = 1% (SM-like situation)
 - Larger if leptonic W' decays forbidden?

Signals of Parity Restoration at ATLAS and CMS

A Few Words of Caution

- ATLAS and CMS are some of the most complex pieces of equipment ever built
 - It will take time to understand the response, determine the failure modes
 - Some failures can generate artificial signals (correlated noise effects, unexpected saturation, ...)
- Poor knowledge of a number of important backgrounds
 - W/Z + jets (see Tevatron struggles)

• $t\overline{t} + jets$

- Combination of challenge in determining the detector response precisely and limited a priori knowledge of the behavior of a number of SM processes leads experimenters to be cautious
 - When we don't "give" our data right away, it's usually because we're uncertain about our interpretation and want to run more checks before publishing
 - Tevatron experiments currently publish ~30 papers/year
- I fear some unrealistic expectations have been generated regarding the speed with which the LHC experiments will confirm discovery of new physics

- The LHC will explore a new energy domain starting in 2008
- For W', Z' bosons the reach in leptonic decay channels will typically be in the 5-6 TeV range
 - And 2-3 TeV will be reachable early on
- Hadronic decay channels are accessible as well, but with smaller reach
- Multiple handles on determining the nature of a resonance:
 - spin, A_{FB}, BRs