Signals of Parity Restoration at CDF and DØ

COLUMBIA UNIVERSITY

for the CDF and DØ Collaborations

The Tevatron

Running since 2001, expect \rightarrow 2009

- Proton-antiproton collider at 1.96 TeV center of mass energy
- Particle bunches cross at 2.5 (1.7) MHz
 - Run I led to discovery of top quark
 - Run II measurements of B_s mixing frequency, evidence for single top quark production, ...

- "Typical" hadron collider detector: precision tracking, (time of flight), calorimetry and muon system
 - Sophisticated trigger & DAQ

Gustaaf Brooijmans

2T Solenoid

- Also "typical", some different choices
 - Similar performance at high p_T

Tevatron Performance

Antiproton Production Rate Remains Limiting Factor

Collider Run II Integrated Luminosity

Signals of Parity Restoration at CDF and DØ

Dilepton Resonances

- "Self-calibrating" analyses
 - Z peak used to measure electron identification efficiencies, estimate backgrounds, measure or verify integrated luminosity
 - Typical rate at which a jet fakes an electron $\sim 10^{-3} 10^{-4}$
 - Muon fake rate small, but background from real muons from heavy flavor decays
 - These muons typically embedded in a jet -> isolation criteria
 - Hadronic tau decays suffer from much larger backgrounds
 - At given p_T , dijet cross-section ~10⁵ x Drell-Yan
 - Dijet background typically 10-10³ x smaller than DY continuum

Dielectron Resonances

• CDF result with 1.3 fb⁻¹

"Di-EM" Resonances

• DØ analysis searches for Randall-Sundrum gravitons: doesn't try to distinguish electrons and photons

Signals of Parity Restoration at CDF and DØ

Dimuons

 At high energy, resolution much better for electrons (calorimeter vs tracker)

Can correct

 obviously
 mismeasured
 muons based on
 assumption
 object is ~at rest

- To have acceptable rate, require that at least one tau decays hadronically
 - Large background from jets
 - Low efficiency compared to electrons & muons
- Can try to reconstruct di-tau mass using "collinear" approximation
 - Using visible mass has been shown to do better

Hadronic Tau decays mostly have 1,3 charged pions Dedicated reconstruction algorithms, + neural nets

- Select "lepton+jet" di-top events and use b-tagging to reduce backgrounds from W +jets, etc
- Use a χ²-based algorithm to reconstruct di-top mass
 - Constrain $m_{top} = 175 \text{ GeV/c}^2$
 - Choose solution with lowest χ²
 and exclude if value is too large
 - Binned likelihood to determine sensitivity

Total Invariant Mass of the tt System Number of Events CDF Run II Preliminary, L=955 pb⁻¹ Data SM tt 10 non-top Background 10⁻¹ 10⁻² 600 300 400 500 700 800 900 1000 1100 M_{...} [Gev/c²]

Doubly Charged Higgs

- Exist in models with Higgs triplets (like LRSM)
- CDF search in $H^{++} \rightarrow e\tau$, $\mu\tau$ channels
 - Assumed to be pair-produced: require at least 3 leptons → low backgrounds, no candidate events

• New DØ result

• CDF result with ~200 pb⁻¹ has 95% CL limit $m_{W'}$ > 788 GeV/c²

Conclusion

- Leptonic channels "golden" in search for new W and Z bosons
- Hadronic channels very difficult given large dijet backgrounds
 - Di-top result from CDF, sensitive to models with strong top coupling (and large cross-section)
 - There is a DØ limit from Run I
- Tevatron is setting stringent limits
 - Typical reach is getting close to 1 TeV, will get there by end of Tevatron run